SVD-phy: improved prediction of protein functional associations through singular value decomposition of phylogenetic profiles
نویسندگان
چکیده
UNLABELLED A successful approach for predicting functional associations between non-homologous genes is to compare their phylogenetic distributions. We have devised a phylogenetic profiling algorithm, SVD-Phy, which uses truncated singular value decomposition to address the problem of uninformative profiles giving rise to false positive predictions. Benchmarking the algorithm against the KEGG pathway database, we found that it has substantially improved performance over existing phylogenetic profiling methods. AVAILABILITY AND IMPLEMENTATION The software is available under the open-source BSD license at https://bitbucket.org/andrea/svd-phy CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
A Dimensionless Parameter Approach based on Singular Value Decomposition and Evolutionary Algorithm for Prediction of Carbamazepine Particles Size
The particle size control of drug is one of the most important factors affecting the efficiency of the nano-drug production in confined liquid impinging jets. In the present research, for this investigation the confined liquid impinging jet was used to produce nanoparticles of Carbamazepine. The effects of several parameters such as concentration, solution and anti-solvent flow rate and solvent...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملApplication of Singular Value Decomposition and Functional Clustering to Analyzing Gene Expression Profiles of Renal Cell Carcinoma
Microarray gene expression profiles of both renal cell carcinoma (RCC) tissues and a RCC cell line were analyzed using singular value decomposition (SVD) and functional clustering. The SVD projections of the expression profiles revealed significant differences between the profiles of RCC tissues and a RCC cell line. Based on the biological processes, selected genes were annotated and clustered ...
متن کاملSingular Value Decomposition based Steganography Technique for JPEG2000 Compressed Images
In this paper, a steganography technique for JPEG2000 compressed images using singular value decomposition in wavelet transform domain is proposed. In this technique, DWT is applied on the cover image to get wavelet coefficients and SVD is applied on these wavelet coefficients to get the singular values. Then secret data is embedded into these singular values using scaling factor. Different com...
متن کامل